

OpenFOAM ® Basic Training

3rd edition, Feb. 2015

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Editors and Contributors:

¶ Bahram Haddadi (TU Wien)

¶ Christian Jordan (TU Wien)

¶ Jozsef Nagy (JKU Linz)

¶ Clemens Gößnitzer (TU Wien)

¶ Vikram Natarajan (TU Wien)

¶ Sylvia Zibuschka (TU Wien)

¶ Michael Harasek (TU Wien)

Vienna University of Technology
Institute of Chemical Engineering

Cover picture from:

¶ Bahram Haddadi, The image presented on the cover page has been prepared

using the Vienna Scientific Cluster (VSC).

Attribution - NonCommercial - ShareAlike 3.0 Unported (CC BY - NC- SA 3.0)

This is a human-readable summary of the Legal Code (the full license).
Disclaimer
You are free:

¶ to Share ð to copy, distribute and transmit the work

¶ to Remix ð to adapt the work
Under the following conditions:

¶ Attribution ð You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).

¶ Noncommercial ð You may not use this work for commercial purposes.

¶ Share Alike ð If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

With the understanding that:

¶ Waiver ð Any of the above conditions can be waived if you get permission from the
copyright holder.

¶ Public Domain ð Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

¶ Other Rights ð In no way are any of the following rights affected by the license:

¶ Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

¶ The author's moral rights;

¶ Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

¶ Notice ð For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to this web page.

This book has been used as a basis for preparing a series of video lectures on youtube

by Jozsef Nagy (JKU Linz):

www.youtube.com/channel/UCjdgpuxuAxH9BqheyE82Vvw

(Search for: Jozsef Nagy OpenFOAM at youtube.com)

http://vsc.ac.at/home/
http://www.jku.at/ipim/content
http://vsc.ac.at/home/
http://www.jku.at/ipim/content
http://vsc.ac.at/home/
http://www.jku.at/ipim/content
http://vsc.ac.at/home/
http://www.jku.at/ipim/content
http://vsc.ac.at/home/
http://www.jku.at/ipim/content

OpenFOAM

®
 Basic Training

Table of Contents

i

Tutorial One: elbow Page 1

Solver: icoFoam

Geometry: 2-dimensional

Purpose: Different meshes

Tutorial Two: forwardStep Page 11

Solver: sonicFoam

Geometry: 2-dimensional

Purpose: Built in meshing

Tutorial Three: shockTube Page 17

Solver: sonicFoam

Geometry: 1-dimensional

Purpose: Patching fields

Tutorial Four: shockTube Page 23

Solver: scalarTransportFoam

Geometry: 1-dimensional

Purpose: Discretization

Tutorial Five: circle Page 28

Solver: scalarTransportFoam

Geometry: 2-dimensional

Purpose: Discretization

Tutorial Six: pitzDaily Page 32

Solver: simpleFoam

Geometry: 2-dimensional

Purpose: Steady state, Turbulence

Tutorial Seven: pitzDaily Page 36

Solver: pisoFoam

Geometry: 2-dimensional

Purpose: Transient, Turbulence

Tutorial Eight: damBreak Page 40

Solver: interFoam

Geometry: 2-dimensional

Purpose: Multiphase

OpenFOAM

®
 Basic Training

Table of Contents

ii

Tutorial Nine: depthCharge3D Page 45

Solver: compressibleInterFoam

Geometry: 3-dimensional

Purpose: Parallel processing, Manual method in parallel processing

Tutorial Ten: TJunction Page 54

Solver: simpleFoam, scalarTransportFoam

Geometry: 3-dimensional

Purpose: Residence Time Distribution

Tutorial Eleven: reactingElbow Page 61

Solver: reactingFoam

Geometry: 3-dimensional

Purpose: Setting reacting simulations

Appendix A: Important Linux Commands Page 68

Appendix B: Running OpenFOAM® Page 71

Appendix C: Frequently Asked Questions (FAQ) Page 74

Appendix D: ParaView Page 77

OpenFOAM

®
 Basic Training

Example One

1

icoFoam ï elbow (mesh)

Simulation

Using icoFoam solver, simulate 75 s of flow in an elbow for following GAMBIT

meshes:

¶ Tri-mesh (comes with OpenFOAM
®
 tutorial)

¶ Hex-mesh coarse (check GAMBIT ñelbow 2Dò tutorial)

¶ 2 times finer hex-mesh (refine previous step mesh)

Objectives

¶ Looking at the initial values for p and U.

¶ Ensuring proper boundary definitions (imported boundaries from GAMBIT,

additional surfaces during conversion and boundaries definition in OpenFOAM
®
)

Post processing

Import your simulation to ParaView, extract data make two diagrams (using

spreadsheet calculators) of pressure and velocity magnitude along a line between two

tubes, do the same for all three simulations.

OpenFOAM

®
 Basic Training

Example One

2

Step by step simulation

Setting system environment

Make sure your system environment is set correctly, check Appendix B.

Copying tutorial

Open a terminal and copy the elbow tutorial from the following path to your working

directory (see Appendix A for using a terminal in Linux):

~/OpenFOAM/OpenFOAM- 2.3.0/tutorials/incompressible/icoFoam/

elbow

Converting mesh

The mesh which is produced by GAMBIT is not directly compatible with

OpenFOAM
®
. First, the mesh needs to be converted to an OpenFOAM

®
 mesh, using

following tool:

>fluentMeshToFoam elbow.msh

If the mesh was created in mm and is converted using the mentioned command it will

convert the mesh with wrong dimensions, since all the units in OpenFOAM
®

are SI
1

Units. There are different flags included with most of OpenFOAM
®

tools, for

checking them use the flag - help after the command, e.g.:

>fluentMeshToFoam ïhelp

The output gives an overview of available options of the tool and also a short

description on how to use it:

Usage: fluentMeshToFoam [OPTIONS] <Fluent mesh file>

options:

 - case <dir> specify alternate case directory, default is the cwd

 - noFunctionObjects

 do not execute functionObjects

 - scale <factor> geometry scaling factor - default is 1

 - writeSets write cell zones and patches as sets

 - writeZones write cell zones as zones

 - srcDoc display source code in browser

 - doc display application documentation in browser

 - help print the usage

Using: OpenFOAM - 2.3.0 (see www.OpenFOAM.org)

Build: 2.3.0 - f5222ca19ce6

The - scale flag is used for converting the mesh dimensions from other units to SI

units, e.g. if the mesh was created in mm it will be converted to meter by using -

scale 0.001 and if the flag is omitted, uses 1:

>fluentMeshToFoam elbow.msh - scale 1.0

Note: The mesh which is imported to OpenFOAM
®
 should be a three dimensional

mesh. For carrying out 2D (also 1D) simulations a three-dimensional mesh should be

1 International System of Units

OpenFOAM

®
 Basic Training

Example One

3

created with just one cell in the third dimension (for 1D, one cell in the second and

also one cell in the third direction).

Note: If there are internal boundaries in the mesh, there is another tool,

fluent3DMeshToFoam. Using this tool, the internal boundaries will be kept during

conversion.

Case structure

Most of the cases in OpenFOAM
®

have the following basic case structure (directory

tree):

There are three main directories (0, constant, system) in each case foloder:

0 directory

The 0 directory includes the initial conditions for running the simulation. In each file

in this folder the initial conditions for one property can be set. The files are named

after the property they are standing for, e.g. usually T file includes temperature initial

conditions. In the elbow example there are only two files inside the 0 directory, p and

U. p stands for pressure and U stands for velocity. Checking p:

OpenFOAM

®
 Basic Training

Example One

4

>nano
1
 p

It will be like this:

/* -------------------------------- * - C++ - * ---------------------------------- * \

| ========= | |

| \ \ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \ \ / O peration | Version: 2.3.0 |

| \ \ / A nd | Web: www.OpenFOAM.com |

| \ \ / M anipulation | |

\ * - -- */

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object p;

}

// * //

dimensions [0 2 - 2 0 0 0 0];

internalField uniform 0;

boundaryField

{

 wall - 4

 {

 type zeroGradient;

 }

 velocity - inlet - 5

 {

 type zeroGradient;

 }

 velocity - inlet - 6

 {

 type zeroGradient;

 }

 pressure - outlet - 7

 {

 type fixedValue;

 value uniform 0;

 }

 wall - 8

 {

 type zeroGradient;

 }

 frontAndBackPlanes

 {

 type empty;

 }

}

// *** //

In the dimensions the physical dimension according to SI base units of the quantity

is defined, for example here it shows that the p dimension is (m/s)
2
.

1
 nano is a text editor used in Linux OS (for closing and saving: ctrl+x)

OpenFOAM

®
 Basic Training

Example One

5

Note: As you can see the p unit is not the pressure unit (Pa). It is due to the fact that

in incompressible solvers in OpenFOAM
®
 p is defined as ñreducedò pressure divided

by density.

Note: In the dimension matrix the first number presents mass unit power, the second

one the length, the third one time, the forth one the temperature and the fifth one the

quantity (mole).

The internalField sets the initial field of a specific quantity in the solution

domain.

The type of each of our boundaries as well as the value of this quantity on the

boundaries is defined in the boundaryField . There are different types of boundary

conditions in OpenFOAM
®
:

- zeroGradient : Applies a zero gradient boundary type to this boundary

(Neumann boundary condition).

- fixedValue : Applies a fixed value to this boundary (Dirichlet boundary

condition).

- empty : It is for sides, which are vertical to the direction which is not going to

be considered (e.g. in 2D simulations these boundaries are vertical to the third

dimension). In this boundary type both of the sides vertical to one dimension

should be selected together and named as one boundary.

Note: If a fixedValue boundary condition with value equals $internalField is

used, it is equal to using zeroGradient , except zeroGradient applies the

boundary condition implicitly, but fixedValue with $internalField value

applies the boundary condition explicitly.

Note: In some mesh creation software like GAMBIT, empty boundary condition do not

exist. All the faces perpendicular to the direction which is not going to be considered

should be defined as a new boundary with type wall . After converting the mesh to

OpenFOAM
®
 mesh, modify that boundary in the file constant/polyMesh/ boundary,

and change its type from wall to empty , and also change inGroups from wall to
empty .

The U file has to be defined via three components (since velocity is a vector): first one

stands for the x component, second one for the y component, and the third one for the

z component. For this case setup the z component is always zero because it is a 2D

simulation and no calculations will be done in the z direction. The boundaries vertical

to z direction have been already set to empty.

constant directory

The constant directory usually consists of a subdirectory and some files. The files

(usually) include material properties, simulation physics and chemistry. In the

directory ñpolyMeshò the mesh data are stored (in this case the data for converted

mesh). The boundary file in this polyMesh directory includes the mesh boundary data,

OpenFOAM

®
 Basic Training

Example One

6

e.g. type, number of faces on this boundary and also starting face number (unique face

IDs) for this boundary (for the sake of space, the dictionary headers will not be

included in this scope any more):

// * //

6

(

 wall - 4

 {

 type wall;

 nFaces 100;

 startFace 1300;

 }

 velocity - inlet - 5

 {

 type patch;

 nFaces 8;

 startFace 1400;

 }

é

 frontAndBackPlanes

 {

 type empty;

 nFaces 1836;

 startFace 1454;

 }

)

// *** //

Comparing the boundary names with the ones set in GAMBIT, they should be the

same, and also the boundary types (walls should be wall, inlet and outlets should be

patch, empties should be empty). Starting cell number and also number of each face

cells can also be checked here.

By opening the transportProperties file, properties dimensions and also the property

value can be found and edited, e.g.:

nu nu [0 2 - 1 0 0 0 0] 0.01;

nu is the fluid kinematic viscosity, which is 0.01 m
2
/s for this example.

system directory

Solver and finite volume methods settings can be found and changed in this directory.

There are three main files in this directory:

- fvSchemes: The discretization scheme which is used for each term of the

equations are set in this file.

- fvSolution: Contains the settings to the coupling method of pressure and

velocity, the numerical methods, which are used for solving different

quantities, and also the final tolerance for convergence of that quantity.

- controlDict: The time, time step from where simulation starts (startFrom),

the time when the simulation finishes (stopAt), the time step (deltaT), the

data saving interval (writeInterval), the saved data file format

(writeFormat), the saved file data precision (writePrecision), and also

OpenFOAM

®
 Basic Training

Example One

7

if changing the files during the run can affect the run or not

(runTimeModifiable) are set in this file.

Note: If the write format is ascii , then the simulation data which is written to the file

can be opened and read using any text editor. If the format is binary , the data will

be written in binary style and is not readable by text editors. The advantage of

bina ry over ascii is the smaller file size, and consequently faster conversion and

writing to disk, for big simulations.

// * //

application icoFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 75;

deltaT 0.05;

writeControl timeStep;

writeInterval 20;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat genera l;

timePrecision 6;

runTimeModifiable yes;

// *** //

Note: This simulation continues from the last time step data which is saved

(latestTime). If there was no saved data it will start from start time (startTime),

which is zero in this case.

Running simulation

The simulation can be run by typing the solverôs name and executing it:

>icoFoam

Note: For running the simulation the solver command (e.g. icoFoam) should be

executed inside the copy of the tutorial main folder. For example: The command

should be executed in the elbow folder, if it was run at some subfolders or somewhere

else, the simulation will fail.

OpenFOAM

®
 Basic Training

Example One

8

Exporting simulation data

The data files created by OpenFOAM
®
 should be exported (converted) by the

appropriate tools, to the post processing tools data format. For ParaView:

>foamToVTK

where VTK is the ParaView data format. This command should be also executed in

the case main directory, e.g. elbow. Here, ParaView is used as the post-processing

tool, for running it

>paraview &

Note: There is also another option to open the OpenFOAM
®
 simulation results with

ParaView without converting them to VTK; Create an empty text file in the main case

directory, name it <someName>.foam (e.g. foam.foam), and execute the following

command. This method is good for fast evaluation of the data in the middle of the

simulation or with a decomposed case in parallel simulations:

>paraview foam.foam &

Note: By putting & at the end of command, the command line will remain active and

ready for further inputs while that program is running.

Examining different meshes

Do the same for the other two meshes. Just the mesh for the first simulation is

included in the elbow example of OpenFOAM®. For the other two simulations the

mesh should be provided by the user. For finding the tutorials on how to create the

geometry and the mesh, search the internet for ñGAMBIT elbow mesh 2Dò. The

dimensions and also the mesh info are provided in that tutorial. Try to create it by

using GAMBIT. When you are done you have to convert it into a 3D mesh with 1 cell

in the z-direction.

The comparisons of all three case results and charts are shown below.

Figure 1.1 The Hex Fine mesh created using GAMBIT

OpenFOAM

®
 Basic Training

Example One

9

 Note: As mentioned before after converting the mesh, change the boundaries

perpendicular to the direction which is not going to be considered (the z direction)

from wall to empty (just replace wall with empty for this boundary).

Mesh Pressure Velocity

Tri

Hex

Hex
Fine

Figure 1.2 Comparison of different mesh type results at t = 75 s

OpenFOAM

®
 Basic Training

Example One

10

Figure 1.3 Pressure and velocity for different meshes at t=75 s, along the arc shown

The comparison plots are along the line between points A (54 0 0) at the small tube

entrance and B (60 60 0) at the large tube exit part (length units are in meter) for Tri-

mesh, for other two meshes created using GAMBIT the points are A (22 -33 0) and

B (27 30 0).

Note: For extracting data over a line, the line should be defined in ParaView using

ñPlot Over Lineò, then the data over this line can be exported by choosing Save Data

from File menu in ParaView.

OpenFOAM

®
 Basic Training

Example Two

11

sonicFoam ï forwardStep

Simulation

Using sonicFoam solver, simulate 10 s of flow over a forward step.

Objectives

¶ Understand blockMesh

¶ Define vertices via coordinates as well as surfaces and volumes via vertices.

Post processing

Import your simulation into ParaView, and examine the mesh and the results in detail.

OpenFOAM

®
 Basic Training

Example Two

12

Step by step simulation

Copy tutorial

Copy the tutorial from the following folder to your working directory:

~/OpenFOAM/OpenFOAM- 2.3.0/tutorials/compressible/sonicFoam/

laminar/forwardStep

0 directory

The file T includes the initial temperature values. Internal pressure and temperature

fields are set to 1, and the initial velocity in the domain is set to zero except at the

inlet boundary, where it is 3.

Note: As it can be seen, the p unit is the same as the pressure unit, because the

sonicFoam is a compressible solver.

Note: Do not forget that, this example is a purely numeric example (you might have

noticed this from pressure values).

constant directory

On checking thermophysicalProperties file, different properties of a compressible gas

can be set:

// * //

thermoType

{

 type heP siThermo;

 mixture pureMixture;

 transport const;

 thermo hConst;

 equationOfState perfectGas;

 specie specie;

 energy sensibleInternalEnergy;

}

mixture

{

 specie

 {

 nMoles 1 ;

 molWeight 11640.3;

 }

 thermodynamics

 {

 Cp 2.5;

 Hf 0;

 }

 transport

 {

 mu 0;

 Pr 1;

 }

}

// *** //

In the thermoType , the models for calculating thermo physical properties of gas are

set:

OpenFOAM

®
 Basic Training

Example Two

13

- mixture : Is the model which is used for the mixture, whether it is a pure

mixture, a homogeneous mixture, a reacting mixture or é.

- t ransport : Defines the used transport model. In this example a constant

value is used.

- t hermo : It defines the method for calculating heat capacities, e.g. in this

example constant heat capacities are used.

- equati onOfState : Shows the relation which is used for the compressibility

of gases. Here ideal gas model is applied by selecting perfectGas .

- ener gy: This key word lets the solver decide which type of energy equation

it should solve, enthalpy or internal energy.

After defining the models for different thermo physical properties of gas, the

constants and coefficients of each model are defined in the sub-dictionary mixture .

E.g. molWei ght shows the molecular weight of gas, Cp stands for heat capacity and

mu for dynamic viscosity as Pr shows the Prandtl number.

By opening the turbulenceProperties the appropriate turbulent mode can be set (in this

case it is laminar):

simulationType lam inar ;

There are two files in the polyMesh directory: blockMeshDict and boundary. In this

example the mesh is not imported from other programs (e.g. GAMBIT). It will be

created inside OpenFOAM
®
. For this purpose the blockMesh tool is used. blockMesh

reads the geometry and mesh properties from blockMeshDict file:

>nano blockMeshDict

// * //

convertToMeters 1;

vertices

(

 (0 0 - 0.05)

 (0.6 0 - 0.05)

 (0 0.2 - 0.05)

 (0.6 0.2 - 0.05)

 (3 0.2 - 0.05)

 (0 1 - 0.05)

 (0.6 1 - 0.05)

 (3 1 - 0.05)

 (0 0 0.05)

 (0.6 0 0.05)

 (0 0.2 0.05)

 (0.6 0.2 0.05)

 (3 0.2 0.05)

 (0 1 0.05)

 (0.6 1 0.05)

 (3 1 0.05)

);

blocks

(

 hex (0 1 3 2 8 9 11 10) (25 10 1) simpleGrading (1 1 1)

 hex (2 3 6 5 10 11 14 13) (25 40 1) simpleGrading (1 1 1)

 hex (3 4 7 6 11 12 15 14) (100 40 1) simpleGrading (1 1 1)

);

OpenFOAM

®
 Basic Training

Example Two

14

edges

(

);

boundary

(

 inlet

 {

 type patch;

 faces

 (

 (0 8 10 2)

 (2 10 13 5)

);

 }

 outlet

 {

 type patch;

 faces

 (

 (4 7 15 12)

);

 }

 bottom

 {

 type symmetryPlane;

 faces

 (

 (0 1 9 8)

);

 }

 top

 {

 type symmetryPlane;

 faces

 (

 (5 13 14 6)

 (6 14 15 7)

);

 }

 obstacle

 {

 type patch;

 faces

 (

 (1 3 11 9)

 (3 4 12 11)

);

 }

);

mergePatchPairs

(

);

// *** //

As noted before units in OpenFOAM
®
 are SI units. If the vertex coordinates differ

from SI, they can be converted with the convertToMeters command. The number

in the front of convertToMeters shows the constant, which should be multiplied

with the dimensions to change them to meter (SI unit of length). For example:

convertToMeters 0.001

shows that the dimensions are in millimeter, and by multiplying them by 0.001 they

are converted into meters.

OpenFOAM

®
 Basic Training

Example Two

15

In the vertices part, the coordinates of the geometry vertices are defined, the

vertices are stored and numbered from zero, e.g. vertex (0 0 - 0.05) is numbered

zero, and vertex (0.6 1 - 0.05) points to number 6.

In the block part, blocks are defined. The array of numbers in front each block shows

the block building vertices, e.g. the first block is made of vertices (0 1 3 2 8 9

11 10) .

After each block the mesh is defined in every direction. e.g. (25 10 1) shows that

this block is divided into:

- 25 parts in x direction

- 10 parts in y direction

- 1 part in z direction

As it was explained before, even for 2D simulations the mesh and geometry should be

3D, but with one cell in the direction, which is not going to be solved, e.g. here

number of cells in z direction is one and itôs because of that itôs a 2D simulation in x-y

plane.

The last part, simpleGrading (1 1 1) shows the size function.

In the patches part each boundary is defined by the vertices it is made of, and also

its type and name are defined.

Note: For creating a face the vertices should be chosen clockwise when looking at the

face from inside of the geometry.

Running simulation

Before running the simulation the mesh has to be created. In the previous step the

mesh and the geometry data were set. For creating it the following command should

be executed from case main directory (e.g. forwardStep):

>blockMesh

After that, the mesh is created in the polyMesh folder. For running the simulation,

type the solver name form case directory and execute it:

>sonicFoam

Exporting simulation

The mesh is presented in the following way in ParaView, and you can easily see the

three blocks, which were created.

OpenFOAM

®
 Basic Training

Example Two

16

Figure 2.1 Mesh generated by blockMesh

Note: When a cut is created by default in ParaView, the program shows the mesh on

that plane as a triangular mesh even if it is a hex mesh. In fact, ParaView changes the

mesh to a triangular mesh for visualization, where every square is represented by two

triangles. For avoiding this when creating a cut in ParaView in the Slice properties

window, uncheck ñTriangulate the Sliceò.

The simulation results are as follows:

Time Pressure Velocity Temperature

0.5 s

1 s

10 s

Figure 2.2 Pressure, velocity and temperature contours at different time steps

OpenFOAM

®
 Basic Training

Example Three

17

sonicFoam ï shockTube

Simulation

Use the sonicFoam solver, simulate 0.007 s of flow inside a shock tube, with a mesh

with 100, 1000 and 10000 cells in one dimension, for initial values 1 bar/0.1 bar and

10 bar/0.1 bar.

Objectives

¶ Understanding setFields

¶ Investigate effect of grid resolution

Post processing

Import your simulation into ParaView, and compare results.

OpenFOAM

®
 Basic Training

Example Three

18

Step by step simulation

Open tutorial

Copy the tutorial from the following directory to your working directory

~/OpenFOAM/OpenFOAM- 2.3.0/tutorials/compressible/sonicFoam/

laminar/shockTube

constant directory

By checking the geometry and the mesh, it is obvious that it is a 1D mesh, because of

the number of mesh cells in y and z directions is one, and also in the patches, plates

vertical to these directions are defined as empty boundary condition. The mesh

density can be set in the blocks part by changing x direction mesh size (e.g. change

it from 1000 to 100 or 10000).

system directory

Checking system directory, there is a file ñsetFieldDictò which is used by the tool

setFields for patching (assign an amount to a region) in the simulation. For

example, here the pressure of 0.1 bar should be patched to half of the region (the

geometry is from -5 to 5, so from 0 to 5 will be patched) and 10 bar to the other half.

// * //

defaultFieldValues (volVectorFieldValue U (0 0 0) volScalarFieldValue T

348.432 volScalarFieldValue p 100 0000);

regions (boxToCell { box (0 - 1 - 1) (5 1 1) ; fieldValues (

vol ScalarFieldValue T 278.746 volScalarFieldValue p 10000) ; });

// *** //

In the defaultFieldValues , a value is assigned to the whole domain, for example

here, the velocity has been set everywhere to zero, the temperature to 348.432 K, and

the pressure to 1000000 Pa. In the regions , boxToCell defines the region to which

a special amount must be patched. With boxToCell the region is chosen by a cube,

and the cube is defined by giving the coordinates of one of its diagonals.

After choosing the region, the new values are assigned to the parameters (e.g. here

temperature 278.746 K and pressure 10000 Pa).

Running simulation

In order to assign the values which were set in the setFieldDict:

>setFields

Then run:

>sonicFoam

Note: Checking deltaT in controlDict in the system directory, it is 1e- 5 s. The

question is: What is the criteria for setting deltaT ? If deltaT is bigger, the

simulation will run faster, but a too big deltaT makes the simulation unstable and

OpenFOAM

®
 Basic Training

Example Three

19

sometimes physically meaningless. Therefore deltaT should be selected in a way to

have a fast and at the same time stable and also physically reasonable simulation.

The Courant (Co) number is a dimensionless number, which is usually used as a

necessary condition for having a convergent solution, for one dimension:

ὅέ
όЎὸ

Ўὼ

Where u is velocity magnitude in that direction, ȹt is deltaT and ȹx is the mesh size

in this direction. For having a convergent solution in most of the cases Co should be

less than one in all the cells in the domain.

As it is obvious from the equation by decreasing the ȹx or the mesh size deltaT

should be also adjusted (decreased) for having a stable and convergent solution.

In the OpenFOAM
®
 simulations usually Co is calculated in a way to make sure

maximum Courant number in the whole domain is less than 1. It is assumed Co = 1,

and for ȹx smallest cell size and for u maximum velocity magnitude in domain is

selected. Then using these data, deltaT is calculated. It is a rough estimation, but

always helps to keep Co < 1!

Note: In the 10000 cell case with 10 bar and 0.1 bar, the simulation will crash with

the default deltaT (1e- 5); After checking the same case with 1000 cells, you will

find that the maximum Co is around 0.6:

Time = 0.001

Courant Number mean: 0.0508555 max: 0.589018

diagonal: Solving for rho, Initial residual = 0, Final residual = 0, No

Iterations 0

In the case with 10000 cells, the number of cells is increased by factor 10, so the cell

size is reduced by factor 10. For keeping the Courant number in the same range

(around 0.6), according to the above equation, deltaT should be decreased by factor

10. After reducing it to 1e- 6 the simulation will run smoothly.

Note: After running setFields for the first time, the files in the 0 directory are

overwritten. If the mesh will be changed these files are not compatible with the new

mesh and the simulation will fail. To solve this problem replace the files in the 0

directory with the files in the 0.org. In the OpenFOAM
®
 files or directories with suffix

ñ.orgò (ñoriginalò) usually contain the backup files. If a command changes the

original files these files can be replaced.

Exporting simulation

The simulation results are as follows:

OpenFOAM

®
 Basic Training

Example Three

20

Figure 3.1 Velocities for different configurations along tube at t = 0.007 s

Figure 3.2 Velocity along tube axis for 10 bar/0.1bar and 10000 cells case at

t = 0.007 s

OpenFOAM

®
 Basic Training

Example Three

21

Figure 3.3 Pressures for different configurations along tube at t = 0.007 s

Figure 3.4 Pressure along tube axis for 10 bar/0.1bar and 10000 cells case at

t = 0.007 s

